Simulation Study of Direct Causality Measures in Multivariate Time Series

نویسندگان

  • Angeliki Papana
  • Catherine Kyrtsou
  • Dimitris Kugiumtzis
  • Cees Diks
چکیده

Measures of the direction and strength of the interdependence among time series from multivariate systems are evaluated based on their statistical significance and discrimination ability. The best-known measures estimating direct causal effects, both linear and nonlinear, are considered, i.e., conditional Granger causality index (CGCI), partial Granger causality index (PGCI), partial directed coherence (PDC), partial transfer entropy (PTE), partial symbolic transfer entropy (PSTE) and partial mutual information on mixed embedding (PMIME). The performance of the multivariate coupling measures is assessed on stochastic and chaotic simulated uncoupled and coupled dynamical systems for different settings of embedding dimension and time series length. The CGCI, PGCI and PDC seem to outperform the other causality measures in the case of the linearly coupled systems, while the PGCI is the most effective one when latent and exogenous variables are present. The PMIME outweighs all others in the case of nonlinear simulation systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

Price Bubbles Spillover among Asset Markets: Evidence from Iran

T his paper investigates the existence of possible spillover effects among four main asset markets namely foreign exchange, stock, gold, and housing markets in Iran from 2002:03 to 2015:06. For this purpose, we have exploited Sigma-Point Kalman Filter (SPKF) to extract the bubble component of assets prices in the aforementioned Markets. Then, in order to analyze the price bubbles spi...

متن کامل

Multivariate out-of-sample tests for Granger causality

A time series is said to Granger cause another series if it has incremental predictive power when forecasting it. While Granger causality tests have been studied extensively in the univariate setting, much less is known for the multivariate case. In this paper we propose multivariate out-of-sample tests for Granger causality. The performance of the out-of-sample tests is measured by a simulatio...

متن کامل

Multivariate linear and nonlinear causality tests

The traditional linear Granger test has been widely used to examine the linear causality among several time series in bivariate settings as well as multivariate settings. Hiemstra and Jones [19] develop a nonlinear Granger causality test in bivariate settings to investigate the nonlinear causality between stock prices and trading volume. This paper extends their work by developing a non-linear ...

متن کامل

Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data.

It is often useful in multivariate time series analysis to determine statistical causal relations between different time series. Granger causality is a fundamental measure for this purpose. Yet the traditional pairwise approach to Granger causality analysis may not clearly distinguish between direct causal influences from one time series to another and indirect ones acting through a third time ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2013